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Final Report: High-Reynolds Number Viscous Flow
Simulations on Embedded-Boundary Cartesian Grids

Marsha J. Berger
Courant Institute
April, 2016

Executive Summary

The long-term goal of this research is to develop algorithms to simulate high Reynolds
number turbulent flow in complicated geometries using embedded boundary grids. The
main stumbling block is the lack of an affordable refinement strategy that is common-
place in structured grids - namely, the use of highly refined, high aspect ratio cells in the
boundary layer. Over the grant period, we developed a two-dimensional viscous steady-
state flow solver for both laminar and turbulent flow. We developed a way to incorporate
wall functions in non-body fitted grids by having each cut cell spawn a “linelet” from
the wall through the cut cell centroid, into the Cartesian grid. We developed a fully
conservative method for coupling the wall function to the flow on the Cartesian grid.
We extended the wall function into a more general wall model that solves a two point
boundary value problem on the linelets. The bvp includes more terms than is typically
used in the diffusion model, which is what standard wall functions are based on. The
improved wall model on the linelets allow them to go further into the boundary layer,
reducing the Cartesian resolution requirements and allowing coarser near-wall Cartesian
cells. This work was in collaboration with Michael Aftosmis, at NASA Ames Research
Center.

Research During Grant Period
In previous work during the last grant period we developed Navier Stokes solvers for

laminar and viscous flows in two dimensions. In integral form the two dimensional
Reynolds-averaged Navier Stokes equations are:

d “ ~ N N
//UdA+74 (Fi+G)) -7dS=d (Fi+Gyj)-ndS (1)
dt J Ja o0 o0

1
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where U = (p, pu, pv, pE)T, and

pu pU 0 0
2
F= pu” +p G = p2uv F, = Tox G, = Tyx
pUY pv° +p Tay Tyy
u(pE +p) v(pE +p) UTex + VTzy — Gz UTzy + VTyy — Gy

The Prandtl number is given by Pr = pc,/k, and g is computed using Sutherland’s

law [8]. We take Pr = .72. The shear stresses are

2

Tex = g (M + Mt)(ZuI - Uy)

Tey = (1 + pe)(uy +vz) = Tya (2)
2

vy = 3 (1 + ) (2vy — ug)

and turbulent heat flux Vg = (42 + %)VT.

For laminar flow, we compared several stencils for use at cut cells, found two with
roughly equivalent accuracy, and implemented the one that fit better in Cart3D’s finite
volume infrastructure. To be able to compute skin friction, which needs du/dy at the
wall, we used a quadratic in the normal direction in the cut cells, instead of the linear
reconstruction used in the rest of the mesh.

For turbulent flow, we used the RANS equations and the Spalart-Allmaras (SA)
turbulence model. The SA turbulence model defines the u; = pry, the turbulent viscosity
in Eq.(2):

% *v
;@y+;;wﬁy:i(Lﬂmngy+%V+Whmgﬂ] (3)

J

+ Production — Destruction

Standard forms for these terms are

1 >0 S >0
flx) = X ) , Production = 4 177 ~ X ) , (4
1+ % otherwise cp1 2 gn U otherwise

N Q4+ S S > —Cypo W
S = Q4+ Q(cfQ+cv3§)7 (5)

(Q (co3—2c02)—R) otherwise

and S = ?2012122, where (2 is the magnitude of vorticity. For the destruction term we have

(6)

Cwl fw(%)2 x>0
2

Destruction = . )
—cw1 (4)°  otherwise
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with vy = D f,1 and the usual definitions of f,, g, 7, X, and the other constants[13]. We
assume the flow is fully turbulent and do not include transition terms.

We developed a somewhat modified “negative” model to handle the strong transient
behavior on coarse grids using multigrid. (Negative refers to how to handle the non-
physical negative viscosity; at convergence when viscosity is back to being positive the
equations are the same). Many researchers use a first order finite volume scheme to
compute 7 in (3) above, to help keep the viscosity positive. We found it necessary to
use a second order method for 7, since on non-flow-aligned grids this was simply too
diffusive.

We developed a hierarchy of wall models that improve on the wall function, allowing
us to use coarser background grids. The previous research period, where we developed
the “quadratic” wall model used for laminar flow, and the viscous stencil used in the
highly irregular cut cells, has previously been reported, and is already in the literature
[2]. In this research period we developed a wall function and wall model approach,
summarized below.

Analytic Wall Functions for Embedded Boundary Grids

For RANS simulations, the near-wall flow is governed by viscous stresses, as opposed
to the outer flow where inertial forces dominate. This is the basis for the use of wall
functions, which have been receiving renewed interest for both body-fitted [6, 12, 9, 11]
and non-body-fitted immersed boundary grids [4, 7]. By looking at the asymptotics of
the RANS equations, keeping the largest terms, and assuming for simplicity there is no
pressure gradient, the so-called “diffusion model” can be derived,

o (rmge) =0 ™

In boundary layer (“plus”) coordinates and after integrating once this becomes

dU+
+ _
() G5 =1 (8)
where
vt =wfv, Ut=Uu, and y*=yu/v. (9)

There are two regimes, v;7 < 1, which gives the linear behavior Ut = y* in the
viscous sublayer, and v;” > 1, which gives the logarithmic layer U+ = (1/x)log(y*) + B,
with s = .41, when the turbulent viscosity is approximated using v;” = ky*. The
constant B = 5.0333. Spalding’s wall function, given by

1 1
ytwh) =ut +e "B <e”w+ —1—kut — §(ﬁu+)2 - 6(/£u+)3> (10)
is a functional fit to these two regimes.

3
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Figure 1: Comparison of SA wall model with Spalding’s formula. The largest difference is
in the transition region.

Recently there is a new wall function, developed by Allmaras [2, 1], which is more
complicated to derive but more compatible with the limiting form of the Spalart- Allmaras
model used in our RANS simulations, see Fig. 1. In final form it is

") = B + alog((y" +a1)? +b7) — exlog((y™ + a2)® + b3) 1

— c3ArcTan(yt +a1,b1) — caArcTan(y ' + ag, bo), (11)
where we omit the values for the many constants. Equation (11) (henceforth called
the SA wall model) has the advantage over Spalding’s formula of matching the pro-
files actually computed in the flow field by the Spalart-Allmaras turbulence model. In
particular the profiles are a better match through the transition region, where the two
formulas differ the most. This is evident in Fig. 1. In this figure, Spalding’s formula was
evaluated using B = 5.033 in (10) to match the asymptotic behavior of the SA model,
which produces this value for the constant shift. Furthermore, (11) is more computa-
tionally efficient since given y™, the value u™ is explicitly evaluated rather than needing
a nonlinear iteration as (10) does.!

The wall function is coupled to the underlying Cartesian grid through its endpoints.
This is illustrated schematically in Fig. 2. At the wall it is anchored with a zero velocity
boundary condition at the wall in each cut cell C. At the other end, there is a fixed
point F (to use the same terminology as [4]) located a distance hp from the boundary
in the normal direction, which anchors it in the flow. (The use of a fixed distance away
from the wall, instead of the cut cell centroid for example is needed to compensate
for the wildly irregular cut cells in the mesh.) The solution at point F is obtained by
interpolation from the Cartesian mesh. The velocity is then rotated into a normal and
tangential frame of reference to obtain g4,g, the tangential velocity, using the normal
vector defined by the portion of the boundary in cut cell C. A Newton iteration is used

"However Kalitzin et al. [9] have a nice approach that avoids iteration using pre-computed tables of
inverses.

4
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Figure 2: lllustration of construction for wall model coupling via constant height “forcing
pts” through the centroids of the cut cells.

to find the friction velocity u, (see eq. (9) ) so that the points lie on the wall function.
Very few iterations are needed since the u, from the previous timestep provides a great
starting guess for the next iteration.

Gradients of the model provide the viscous flux du/0y|y—o needed at the wall by
the finite volume scheme. The model also gives values of the tangential velocity needed
to compute the difference at the cut faces (after rotating back to Cartesian velocity
components u and v). Finally, we improve the gradient originally computed in a cut cell
with the gradient of the solution to the wall model, evaluated at the cut cell centroid.
(This was also done with the quadratic model for laminar flow). This provides a fully
conservative coupling of the wall function and mesh, and makes maximal use of the wall
function.

Figure 3 shows computational results from turbulent flow over a bump in a channel,
taken from the NASA Langley Turbulence Modeling Resource [14] so we can compare
with their results using CFL3D.

BVP Wall Models

There are several drawbacks to wall functions. For flows with separation, the skin fric-
tion, and u,, go to zero and the flow reverses. We will not be able to compute separation
using a model in plus coordinates since that entails dividing by zero. Furthermore, the
diffusion model assumes the convective terms are small, so cannot be used far from the
wall where this is no longer true. It also assumes a mixing length model [10] for the
turbulent viscosity, which is not true away from the wall after the initial linear growth.

We have developed a hierarchy of two point boundary value problems (bvp) that
include increasingly more “physics”, whose solution replaces the wall function. The first
step was to actually replicate the wall function as a two point bvp. The diffusion model
wall function (7) is already a bvp. By using the mixing length model for y; it can be
easily solved and tested in our framework. We use the Shampine BVP solver for this,
modified to run in parallel in a thread-safe way, save the solution between iterations,

5

DISTRIBUTION A: Distribution approved for public release.



skin friction (SA)

0.008 |y

— cfl3d

© 12levels
0.007 < 1llevels
+ 10 levels

+ 9levels

0.006

0.005
© 0004
0.003
0.002

0.001[

Figure 3: Skin friction using SA wall model on turbulent bump in channel problem. The
wall model stays the same as the grid is refined. Without the wall model, many more mesh
refinements are needed beyond our finest level grid.

etc. The solver takes a systems of first order equations, in this first case it is two
equations, and u(0) and u(F") for the boundary conditions. As before, u(F') is found by
interpolation from the Cartesian grid. This eliminates the problem of u, — 0, since this
works in physical coordinates and not plus coordinates. We then evaluate the solution
du/dyly—o to get ur, and compute the wall boundary conditions on the Cartesian side.
The mixing length model we use is

v =yv=Kytv and yt = yu-Rer /Mo, (12)

so that the turbulent viscosity is proportional to the distance from the wall.

] -
g ==== mixing length model = === mixing length model
Il x-velocity —— x-velocity
¥ — Eddy viscosity — Eddy viscosity
'
'
P
.y
[
]
3~ 102
& : 4 o /
2]

Figure 4: Results showing very different behavior of eddy viscosity profiles at different
stations along wall, taken from very fine reference solution. AGARD case 10 RAE 2822
airfoil simulation [5].

However as Fig. 4 illustrates, this is only the first part of the turbulent viscosity
computed by the RANS equations, valid only very close to the wall.

6
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Figure 5: Results of solving the bvp using a mixing length model and an SA model for
viscosity. The curvature in the eddy viscosity is well captured, and the tangnetial velocity
changes somewhat as well.

The next step up in the hierarchy is to replace the mixing length model, and use
as much of the Spalart-Allmaras turbulence model for v, as is locally available. For
example, all the normal derivatives that are already part of the bvp are included. We
do not compute the terms involving streamwise derivatives.2. This gives the model

0 ou Op

- - = = 1

o (rmge) = o (13)
9 (v+ 17)@ = rest of diffusion terms + Prod + Dest (14)
oy oy N

When written as a system of first order equations this has dimension 4, and the new
boundary conditions are 4(0) = 0 at the wall, and 14(F’), again specified via interpolation
from the Cartesian grid. We initialize the solution using the previous iterate, or initially
using the SA wall function and a mixing length model using the SA turbulence model.
This helps the BVP solver converge quickly.

Using (most of) the SA turbulence equations allows much more variation in turbu-
lent viscosity to be computed, see e.g. the profiles in the bottom row of Fig. 4. The
streamwise velocity and especially the turbulent viscosity profiles vary greatly, depend-
ing on the location along the airfoil and the boundary layer thickness there. The four
equation bvp model is able to compute the eddy viscosity even in this very nonlinear
regime. Figure 5 shows a computation with our model compared to the mixing length
model. The curvature in the eddy viscosity profile is captured very well.

We experimented for a long time with computing streamwise derivatives of terms in

2We use standard terminology and refer generically to the u velocity as the streamwise velocity, even
though with cut cells it is more complicated, similarly for the v velocity, instead of saying normal and
tangential velocities

7
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these models, but found this to be too noisy to work. This involves differentiating from
stations at the same normal location on each linelet. However the bvps are only solved
to a tolerance, and differentiating them amplifies the noise. There is also noise coming
from the changing location of point F' relative to the Cartesian mesh, for example in the
interpolation errors. Finally, there is the problem with the equation for the v velocity -
the velocity in the normal direction. Asymptotically, this is really an equation for the
pressure, and since it is orders of magnitude smaller than the streamwise velocity it is
very hard to compute.

Instead, our highest fidelity model adds some convective terms taken from the back-
ground Cartesian grid to the equation for the tangential velocity. Those terms are zero
at the wall, but as you go further into the boundary layer and approach the inviscid
region, they are needed to balance the pressure gradient. We get the convective terms
at point F again by interpolation from the Cartesian grid. However we have to be able
to evaluate them at any point y € [0, F] to solve the bvp. For this we use a shut off
function that goes from 0 at the wall, to 1 at point F. Altogether, our enhanced wall
model together with the equation for the turbulent viscosity, is

9 ou\ _ Op Ou(F) Ou(F)

oo (G g ) = 52+ vt [P 25 o) 2

0 ov (15)
— | (v +7) 97} = rest of diffusion terms + Prod + Dest

oy oy

Our model for v is
U(y) = SA(y)/SA(F),

which satisfies ¥(0) = 0 and ¢ (F') = 1, where SA is the Spalart-Allmaras wall function.

We are submitting a paper with the details on this wall model to the AIAA in the
coming month. Here we just show one result using this approach. We use an example
of flow around a NACA 0012 from the Turbulence Modeling Resource website. There
is a strong pressure gradient around the leading edge. Figure 6 shows skin friction for
both the SA wall function and the bvp wall model. The SA wall function is not properly
centered with respect to the converged CFL3D solution on either mesh, whereas the bvp
model is aligned on even the coarser of the two mesh results. Other researchers have
tried without success to include only a pressure gradient on the right-hand-side of the
diffusion model [3]. We believe that is because the convective terms are of the same
order as the pressure gradient, and all terms are needed to find the right balance. Note
that the coarser of the two meshes in Fig. 6 has y™ ~ 500 at the leading edge!

8
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Figure 6: Comparison of SA wall function and bvp wall model for the NACA0012 case. This
example convincingly shows how including the pressure gradient term centers the profile.
The grid labeled 'Fine’ (as opposed to Veryfine) has y* =~ 500 at the leading edge.
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